Rambler's Top100
СЕМИНАР НТЦ УП РАН "Новая версия катастрофы космического корабля "Колумбия" Пешин Сергей Владимирович (ИРЭ РАН) В докладе проведен анализ трагедии космического челнока "Колумбия" с учетом проведенных ранее в России и не только исследований атмосферы, ионосферы и т.д..

     Меня не удовлетворили объяснения трагедии обнародованными руководством программы Space-Shuttle. И так как я занимаюсь координацией работ по ионосфере и атмосфере (см.

     2-4 Attachments), я решил исследовать вопрос с точки зрения физических процессов, происходящих в ионосфере. Основная цель - используя предыдущие знания и трагический опыт выработать основные предложения для развития науки в российском научном сообществе и обратить внимание американских коллег на наше понимание ситуации.

     Ионосфера - энергочувствительная нестабильная стохастическая система, осуществляющая защиту всего живого на Земле от космического излучения. Она даже при относительно небольшом внешнем воздействии (HAARP, радиолокационные станции дальнего обнаружения, вспышки на Солнце и т.д.) переходит в другое энергетическое состояние структурированного хаоса.

      Воспользовавшись простейшей формой гамильтонова уравнения, получим решение, причем для двумерного случая, фазовый портрет новообразования представлен в файле bild.tif in Attachment [1], Причем эта структура электронной плотности (стохастическая паутина) в ионосферном волноводе возникает в области, подсвеченной HAARP-ом диаметром примерно 100 км, и как в случае переохлажденной жидкости, спонтанно структурируется вся ионосфера Земли. В многомерном (3 координаты и время) получим решение в виде многосвязных фигур и даже уединенных капель с разной связностью. В пучностях имеем концентрацию ~ 10Е6. Следует учесть еще что присутствующие нейтральные атомы кислорода и азота с концентрацией до ~ 10Е12 будут нагреты электронами практически до тех же высоких температур что и электроны, нагретые HAARP-ом. При этом при движении Колумбии происходит ионизация этих нейтралей.

     Это нам показывали по телевизору - вспышки за иллюминаторами Колумбии во время спуска с орбиты. Теперь немного хронологии. 29 января был проведен эксперимент HAARP. Как я предполагаю, в ионосфере образовался солитон (стохастическая паутина). Теперь надо обосновать, что такая структура просуществует вплоть до 1 февраля, до момента трагедии. Для поддержания такой структуры в ионосфере в условиях наличия ветров, стремящихся выровнять ситуацию, и имеющей скорость вплоть до 1000 м/сек необходима энергетическая подпитка солитона, которая возможна за счет наличия синхронизма с образованиями в магнитосфере (подобными различным сферикам).

      Таким образом предполагается дальнейшая накачка энергией из магнитосферы.

     И в результате первоначальные плотности потока мощности, индуцированной HAARP-ом и составляющей порядка 2-3 мВт/(квадратный сантиметр) за секунду превращается в существенно более значимые величины. Такие поля могут привести к электрическому пробою в критических местах шаттла. А мы знаем, что на высоте -150 км была проведена коррекция траектории. На 240 миллисекунд включались двигатели. А уже на высоте -70 км произошел взрыв.

     Промежуточный вывод. Пребывание в ионосфере должно быть минимальным. В целях безопасности астронавтов, планирование (тип полета) должно начинаться после прохождения ионосферы по баллистической траектории в целях уменьшения времени пребывания в энергонасыщенной ионосфере. Для российского научного сообщества необходимо восстановление, хотя бы в ограниченном районе Арктики контроля за концентрацией электронов в "носе" F-слоя ионосферы с помощью установки в районе прохождения авиатрассы Америка - Азия двух-трех наземных ионозондов. Здесь можно также получить коммерческий эффект.

     И второе, необходимо проводить интенсивные исследования концентрации аэрозолей во всем слое атмосферы, вплоть до ближнего космоса. (См. в Attachment - radiooccultation method.

     Я, например, связываю разрушительные торнадо в США в этом году с мощным выбросом аэрозолей в атмосферу в результате войны в ИРАКЕ.

     This report would never have been presented were it not the support and encouragement of many friends and colleagues. Special thanks go to those who listened and commented upon drafts of the report, particularly Profs. Nikolai Erokhin, Anri Rukhadze, Nikolai Danilkin and special thanks Karen Yang for help in English translation.

     The report describes my analysis of the possible physical causes of the Columbia disaster if the earlier ionosphere investigation in the Russia and USSR and elsewhere are accounted for. HOUSTON, Texas (CNN) -- A piece of foam shot at the leading edge of a model shuttle wing Thursday cut a 22-inch gap in the surface and knocked loose a seal -- a finding termed "significant" by a Columbia Accident Investigation Board official.

     Why did such a piece of foam strike in a critical area, and the findings were termed "significant" with respect to the Columbia accident ONLY after the expedition but not during the expedition? The physical processes in ionosphere in my opinion were in a position to destroy the shuttle. The main purpose of the report is as follows: 1) as a result of prior knowledge and the tragic experience of Columbia, we recommend a specific direction for the development of Russian ionospheric science, and 2) call the attention of our American colleagues to our understanding of this problem.

     The ionosphere is especially susceptible to external influences like solar radiation, auroral particle impact, Joule heating, and similar artificial perturbations.

     The ionosphere can be considered as a non-stable stochastic system. Even without large artificial stimulation like HAARP, early warning stations and in particular, solar flares or CMEs, the ionosphere can be thought of as a system changed into another energetically stable state of structural electron density chaos. Using one of the simplest forms of the Hamilton equation (two-dimensional case) [1] we get the phase portrait of a newly formed phenomenon (soliton) as shown in the attachment "Bild.tif". For many dimensional cases (3 coordinates and time) there will be solution in the form of multiple connected figures and even isolated "drops" that possesses various degrees of connectedness [2,3]. Moreover, this electron density structure (stochastic "web" [1]) arises in the ionosphere waveguide affected by HAARP with a diameter of about 100-km. All or part of Earth's ionosphere is spontaneously transformed into a lattice. As in the case of a supercooled liquid, the entire ionosphere becomes spontaneously structured. As discussed in "National Space Weather Program" Draft 5/13/96 http://www.geo.nsf.gov/atm/nswp/nswp.htm "there are small-scale (~1 km), medium-scale (~10 km), and large-scale (100-1000 km) electron density structures, and they can appear at any location and time. : The medium and large-scale structures at high latitudes can appear in the form of propagating plasma patches, boundary blobs, auroral blobs, and localized depletions, and they can be created by a variety of mechanisms. At the magnetic equator, large scale features known as equatorial bubbles or plasma depletions appear after sunset and are associated with large amplitude density irregularities at a variety of scale sizes." The TEC (total electron content) in the bulges (blobs) is about 10E6. It should be noted that the neutrals (oxygen and nitrogen) with densities up to ~ 10E12 will be heated by electrons in practice up to the same high temperatures as the electrons heated by HAARP. Moreover, during the flight of the shuttle the neutrals are ionized. We observed this phenomenon on TV with the Columbia astronauts through the windows as flashes of light. Right now, we call attention to the chronology. January 29 the HAARP experiment took place. I'm assuming that the stochastic "web" (soliton) has formed. Now, it will be necessary to justify that this soliton could have survived till February 1. As ionospheric winds destroys this soliton it is necessary to make up for this loss. To support such a structure in the ionosphere in the presence of winds with a velocity of up to 1000 m/sec. effectively attempting to smooth out the situation, it is necessary to have energy feeding the soliton, which is possible owing to synchronicity with formations in the magnetosphere (similar processes in different layers). As result we have initial power densities induced by HAARP on the order of ~. And such fields can induce an electric breach in critical places on the Shuttle.

     Further, we know that at an elevation of about 150 km Columbia's trajectory was corrected. For 240 milliseconds the thrusters were activated, and the breakup occurred at about 70 km elevation.

     Conclusion for American colleagues. The amount of time shuttles spend in the ionosphere (F-layer) should be minimized.

     For Russian scientific society: 1) The establishment of earth-based ionosondes in limited regions of the Arctic at least. 2) Aerosol concentration monitoring by the radio-occultation method is acutely necessary for dangerous weather phenomena prediction like tornados and so on.

     [1] G.M.Zaslavsky, R.Z.Sagdeev, D.A.Usikov, and A.A. Chernikov Weak Chaos and Quasi-Regular Patterns, Nauka Publishers, Moscow, 1991.

     [2] Nina Hall, Editor, Exploring Chaos A Guide to the New Science of Disorder, W.W. Norton & Company, New York & London, 1993.

     [3] R.T. Pascale, M. Millemann, and L. Gioja Surfing the Edge of Chaos The Laws of Nature and the New Laws of Business, Three Rivers Press, New York, 2000.

     Sergei Peshin Doctor, The institute of radioengineering & electronics of RAS 1, Vvedensky sq., Fryazino, 141120 Moscow reg., Russia Phone: +7 09656 46576 Fax: +7 095 203 8414 E-mail: svp@fryazino.net STEVENS Institute of Technology Stevens Institute of Technology Castle Point on Hudson Hoboken, NJ 07030 Phone: 201. 216. 5528 Fax: 201. 216. 8240 Department of Chemistry and Chemical Biology May 5, 2003 Handbook of Fourier Transform Raman and Infrared spectra of Polymers by A.H. Kuptsov and G.N. Zhizhin This is a comprehensive handbook on polymer spectroscopy, combining a unique set of polymer spectra with a superb historical outline and sound fundamentals of Raman and infrared spectroscopy. The number and the scope of substances included is the book is amazingly broad. Apart from polymers, related low-molecular compounds are represented, including additives and monomers. This is a 'must have' reference source for any research lab involved in polymer synthesis, modification, or characterization.

     The provided spectra of some natural and synthetic water-soluble polymers make the book even more valuable and very useful to those working in biotechnology, polymer coatings and polymer-based drug delivery.

     Svetlana Alexandrovna Sukhishvili Associate Professor.

     Kh. Kuptsov, G. N. Zhizhin "Fourier-Raman and Fourier-IR spectra of polymers. A handbook." Moscow, Fizmatlit, 2001, 656 pp. (in Russian) This book contains vibrational spectra of 581 polymers. A series of monomers and related compounds are also presented. One can find here organic, element-organic, inorganic and bio-polymers. Raman (100-3500 cm-1 ) and spectra of infrared (IR) absorption (400 - 4000 cm-1 ) recorded in the shown intervals do correspond to intramolecular vibration of atoms binded by chemical bonds into macromolecular structures. The both spectra of a compound (of the same sample) are presented in a form of spectrograms on one page having two identical linear in wavenumbers scales in the frequency range 100 - 4000 cm-1 . The spectra recordings were made on Bruker IFS-66 Fourier-transform spectrometer and on Raman attachment FRA - 106. The interfering luminescence in the case of visible excitation was avoided by the near IR Raman spectra excitation with Nd: YAG-laser line 1.06 ?m. These conditions guaranteed the equal-precision for both Raman and IR spectra for the same sample. This handbook is a real data base, as the information search in it is facilitated by four Indexes, by the proposed polymers classification and also by the connections with other data bases by means of Chemical Abstracts System (CAS) - numbers of compounds. Plots and tables are preceded by the Introductory chapter, which explains physical nature of Raman and IR-absorption spectra. The "spectra-structure" correlations are explained being the base of vibrational spectroscopy successful applications for many years. In the same chapter the samples preparation conditions can be found and the references on the original publications on Fourier-Raman - spectroscopy. There are also several references on collections of polymer spectra, imperfection of which (the absence of Raman spectra and IR-spectra domination) is corrected in this book by joint publication of both spectra of all compounds. The knowledge of the both spectra of polymer essentially rises the identification power of the data base in the application to unknown polymer materials and composites. In the case of experiments on inelastic scattering of neutrons it allows to identify the nature of all vibrational elementary excitations, including the "silent modes". The work on spectral data bases is in progress now and authors would be grateful for comments, corrections, recommendations and for the cooperative efforts-aimed proposals. The Handbook is oriented on chemists, physicists, bio-chemists and bio- physicists in science. We hope to be useful also for employee of the industrial laboratories or plants, producing the polymer components, films, fibers and polymer compounds. For customers we recommend to address to Fizmatlit, Moscow, Profsojuznaya Str. 90. Call up beforehand (095) 334-74-21 or (095) 334-76-20. Also you may inquire and purchase this book at STS UD RAS (Moscow, Russia, Butlerova Str.15); phone of Prof. German Zhizhin is (095) 333-50-81, FAX: (095) 334-75-00, E-mail: gzhizhin@mail.ru; secretary of Director: (095) 333-61-02.

     International scientific and practical conference: SPECTROSCOPY IN SPECIAL APPLICATIONS 18-21 June, 2003 Kyiv, UKRAINE Organized by: R&D Institute for Forensic Science Ministry of Justice, Kyiv, Ukraine Taras Shevchenko National Kyiv University Ukrainian Physical Society Topics: Scientific and methodical basis of spectroscopy application in the areas: Examination: forensic, criminality, medical.

     Testing: technology, pollution and extreme state of the natural matter and materials, quality of water and foods.

     Medical: diagnostics and protection of health.

     Problems of special training higher educational estabilishment students.

     Contact persons: Sergiy Nedilko Physics Faculty, Taras Shevchenko National Kyiv University 2, block 1, acad. Hlushkov ave., 03680, Kyiv, Ukraine Phone/Fax: (380) 44 266 4036 E-mail: nedilko@ups.kiev.ua http://www.ups.kiev.ua/conf/ICSSA Volodymir Kyseljov S&R Institute for Forensic Examination, 19, V.Zhitomirska Str., 01025, Kyiv, Ukraine Phone/Fax: (380) 44 212 2319 E-mail: kniise@lt.kiev.ua http://www.expert.com.ua INTERNATIONAL MEETING ON APPLIED PHYSICS (APHYS-2003) 14-18, October, 2003 Badajos, SPAIN Conference website: www.formatex.org/aphys2003/aphys2003.htm Topics: - Surfaces, Interfaces and Colloids - Imaging Techniques, Microscopy - Nano-sciences and Technologies - Materials Science & Engineering - Biomedicals Engineering and Biomaterials Scirncr&Engineering - Biophysics, Biological & Medical Physics - Computational Physics - Radiation Physics, Radiation Protection 1. Workshop on Modern Applied Microscopy in Molecular and Cell biophysics Research.

     2.

     International Interdisciplinar Workshop on bioengineering Non-crystalline Solids.

     3. International Workshop on Occupational Radiation Protection.

     Contact persons: J.A. Mesa Gonzales APHYS-2003 Secretariat E-mail: secretariat@formatex.org XIX INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY ICORS 2004 in MONTREAL, QUE., CANADA 15-20 августа 2004 года в Монреале (Канада) состоится XIX научная конференция по рамановской спектроскопии Chair: A.D. Bandrauk Co-chair: I.S. Butler Website: http://icors2004.ubishops.ca


Рейтинг@Mail.ru